top of page

๐€๐ˆ ๐‚๐จ-๐€๐ง๐š๐ฅ๐ฒ๐ฌ๐ญ โ€” ๐‹๐ข๐ฏ๐ž ๐Œ๐ฎ๐ฅ๐ญ๐ข-๐€๐ ๐ž๐ง๐ญ ๐€๐ฉ๐ฉ. ๐‚๐จ๐ฌ๐ญ, ๐ช๐ฎ๐š๐ฅ๐ข๐ญ๐ฒ, ๐ซ๐ž๐ฅ๐ข๐š๐›๐ข๐ฅ๐ข๐ญ๐ฒ โ€” ๐ฐ๐ก๐š๐ญ ๐ฐ๐จ๐ซ๐ค๐ฌ? ๐ฐ๐ก๐š๐ญ ๐๐จ๐ž๐ฌ๐งโ€™๐ญ?

Writer: Amar HarolikarAmar Harolikar

Updated: 4 days ago

Sonnet-3.7 the best, Deepseek 2nd, Gemini excellent. ๐“๐ซ๐ฒ ๐ข๐ญ ๐Ÿ‘‰ rex.tigzig.com (open source)





ย 

โœ” ๐“๐จ๐ฉ ๐‹๐ข๐ง๐ž

As an AI Co-Analyst LLM, Sonnet-3.7 is my top choice for deep, incisive analysis support....loving Gemini-2.0-Flash for balance of quality, reliability and cost.. and it's the fastest. Deepseek-R1 quality close to Sonnet but less reliable. o3-mini is lowest cost but not too great

ย 

โœ” ๐“๐š๐ค๐ž ๐ข๐ญ ๐Ÿ๐จ๐ซ ๐š ๐ฌ๐ฉ๐ข๐ง

โ–ธGo to rex.tigzig.com โ†’ Click โ€˜Sampleโ€™ to auto-upload a sample file into a temporary Postgres database. Choose your advanced analyst agent - Gemini/Sonnet/R1/o3-mini. Use sample prompt or modify it

โ–ธNo login, database creds, or API keys needed

โ–ธOption: connect your own database...or upload your own files

ย 

โœ” ๐€๐ ๐ž๐ง๐ญ ๐’๐ž๐ญ๐ฎ๐ฉ โž”ย  ๐…๐ฅ๐จ๐ฐ๐ข๐ฌ๐ž ๐€๐ˆ

Sequential Agents (LangGraph). Router agent โžŸ regular queries to a general analyst agent and complex queries to an advanced analysis route โžŸ Reasoning LLM โžŸ analysis plan + SQL queries โžŸ execution agent (gpt-4o) reviews, corrects, executes, and debugs before delivering results

ย 

โœ” ๐๐ฎ๐š๐ฅ๐ข๐ญ๐ฒ

My (judgmental) ranking โ€“ reasoning & analysis

โ–ธSonnet โ€“ best by far. Brilliant derived variables & approach. Scoreโž” 100 (baseline). Sometimes too deep for 4o to execute, but superb for iterative analysis

โ–ธR1 โ€“ close to sonnet โž” 95

โ–ธGemini โ€“ excellent โž”ย 85

โ–ธo3-mini โ€“ hmmm... โž”ย 50

ย 

โœ” ๐‚๐๐ (๐‚๐จ๐ฌ๐ญ ๐ฉ๐ž๐ซ ๐๐ฎ๐ž๐ซ๐ฒ)

Reasoning-based analysis (breakdown in comments)

โ–ธo3-mini: ~8.5c

โ–ธGemini: ~11c

โ–ธR1: ~13.5c

โ–ธSonnet: ~20.5c

๐•๐š๐ซ๐ข๐š๐ง๐œ๐ž: up to ยฑ50% on the same query.. models evolving...and variances coming down.

๐‹๐š๐ญ๐ž๐ง๐œ๐ข๐ž๐ฌ: mostly 1-4 mins, sometimes 10+ mins....time of day matters โ€“ peak vs. off-peak. Gemini the fastest.

ย 

โœ” ๐‚๐๐โ€“ Regular Queries

โ–ธ4o-mini: ~0.10c

โ–ธ4o: ~1.5c

4o-mini the workhorse; 4o when it stumbles...Gemini may take over

๐•๐š๐ซ๐ข๐š๐ง๐œ๐ž: ยฑ20% โ€“ stable in live deployments

๐‹๐š๐ญ๐ž๐ง๐œ๐ข๐ž๐ฌ: 15 sec to 3 min depending on query complexity and time of day.

ย 

โœ” ๐‘๐ž๐ฅ๐ข๐š๐›๐ข๐ฅ๐ข๐ญ๐ฒ

โ–ธo3-mini & Sonnet โ€“ high reliability -negligible API failures

โ–ธGemini โ€“ high nowadays...but would like to see for some time

โ–ธR1 โ€“ low - API failures & latency spikes. Improving- likely temporary. Alternate hosting options available.

ย 

โœ” ๐ƒ๐ž๐ฆ๐จ๐ž๐ ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž

โ–ธScoring & Ranking of Indian Banks - Credit Card Segment

โ–ธData Mart & Profile Summary for 1M Cust + 10M Trans.

ย 

โœ” ๐’๐๐‹ ๐„๐ซ๐ซ๐จ๐ซ๐ฌ / ๐€๐๐ˆ ๐…๐š๐ข๐ฅ๐ฎ๐ซ๐ž๐ฌ / ๐ƒ๐š๐ญ๐š ๐•๐š๐ฅ๐ข๐๐š๐ญ๐ข๐จ๐ง๐ฌ?

See detailed video guide - for live debugging / error catching (link in comments)

ย 

โœ” ๐’๐จ๐ฎ๐ซ๐œ๐ž ๐‚๐จ๐๐ž๐ฌ, ๐€๐ซ๐œ๐ก๐ข๐ญ๐ž๐œ๐ญ๐ฎ๐ซ๐ž & ๐๐ฎ๐ข๐ฅ๐ ๐†๐ฎ๐ข๐๐ž

5 repos + 7 Flowise schemas + video build guide. Links in comments

ย 

โœ” ๐‚๐š๐ฏ๐ž๐š๐ญ๐ฌ & ๐€๐ฌ๐ฌ๐ฎ๐ฆ๐ฉ๐ญ๐ข๐จ๐ง๐ฌ

Lots of them...plus tips...check comments...

ย 

๐‚๐š๐ฏ๐ž๐š๐ญ๐ฌ, ๐€๐ฌ๐ฌ๐ฎ๐ฆ๐ฉ๐ญ๐ข๐จ๐ง๐ฌย & ๐“๐ข๐ฉ๐ฌ

โ–ธย Reasoning estimates: โ€“ ~100 queries across 4 reasoning agents (1-3 iterations per request. 1 iteration = 1 query).

โ–ธย Regular queries: Based on months of live usage (API calls, automation, web scraping, NL-to-SQL via custom UIs).

โ–ธย Use case-specific: Estimates apply to queries demoed in the video.

โ–ธย High variability for same query: expect to come down as LLMs stabilize

โ–ธย Critical to estimate costs for your own use case.

โ–ธย Check actual billing โ€“ Pen-and-paper token math is unreliable.

โ–ธย Time-based variability โ€“ Example: r1 costs were very high a few weeks ago but are now more reasonableโ€”even though rack rate pricing is unchanged. Be mindful.

โ–ธPrototype app - live working prototype.

ย 

๐‚๐๐‚ ๐›๐ซ๐ž๐š๐ค๐๐จ๐ฐ๐ง- ๐ซ๐ž๐š๐ฌ๐จ๐ง๐ข๐ง๐ ย & ๐š๐ง๐š๐ฅ๐ฒ๐ฌ๐ข๐ฌ

โ–ธย o3-mini: ~8.5c (reasoning + execution)

โ–ธย gemini-2.0-flash: ~11c (reasoning = free tier, execution = 11c). Paid tier is cheaper than gpt-4o-mini (~0.10c additional).

โ–ธย r1: ~13.5c (reasoning = 4c, execution = 9.5c)

โ–ธย sonnet-3.7: ~20.5c (planning = 11.5c, execution = 9c)

ย 

๐‚๐๐‚ย - ๐ซ๐ž๐ ๐ฎ๐ฅ๐š๐ซ ๐ช๐ฎ๐ž๐ซ๐ข๐ž๐ฌ

โ–ธย gpt-4o-mini โ€“ ~0.10c (my workhorse โ€“ solid performance, solid pricing)

โ–ธย gpt-4o โ€“ ~1.5c (I shift to gpt-4o if gpt-4o-mini stumbles)

โ–ธย sonnet โ€“ With 3.5, I used to get ~2.5c. With 3.7, costs are now much higher despite the same token pricingโ€”likely a temporary issue.

ย 

๐–๐จ๐ซ๐ค๐ก๐จ๐ซ๐ฌ๐ž ๐‹๐‹๐Œ: 4o-mini default; 4o when it stumbles. Flash2 may take overโ€”better performance, quality, and cost, with improved reliability over last yearโ€™s Gemini.

ย 

๐ƒ๐ž๐ญ๐š๐ข๐ฅ๐ž๐ ๐•๐ข๐๐ž๐จ ๐†๐ฎ๐ข๐๐ž

Demo, build guide, architecture, API call flows, error catching, repo walkthrus and more.

ย 

๐†๐ข๐ญ๐‡๐ฎ๐› ๐‘๐ž๐ฉ๐จ๐ฌย & ๐’๐œ๐ก๐ž๐ฆ๐š๐ฌ

Main Repo

With step-by-step build guide & links to other repos

Agents Schemas - Flowise

In docs folder in Main Repo


ย 
ย 
bottom of page